Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630723

RESUMO

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Prótons , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular
2.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344766

RESUMO

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Assuntos
Guanidinas , Lipopolissacarídeos , Miométrio , Canais de Potássio de Domínios Poros em Tandem , Trocador 1 de Sódio-Hidrogênio , Sulfonas , Animais , Feminino , Camundongos , Gravidez , Escherichia coli , Lipopolissacarídeos/toxicidade , Miométrio/metabolismo , RNA Interferente Pequeno/metabolismo , Contração Uterina/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo
3.
Invest Ophthalmol Vis Sci ; 65(1): 34, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236186

RESUMO

Purpose: The purpose of this study was to elucidate the involvement of potassium two pore domain channel subfamily K member 5 (KCNK5)-mediated potassium efflux in the pathogenesis of dry eye and to unravel the underlying molecular mechanisms. Methods: To induce experimental dry eye in adult wild-type C57BL/6 mice, scopolamine was administered via subcutaneous injection, and the mice were subjected to desiccating stress. To create an in vitro model of dry eye, desiccation stress was applied to the human corneal epithelial cell line (HCE-T). Intracellular potassium concentration was quantified using inductively coupled plasma mass spectrometry. Cellular death was assessed through lactate dehydrogenase assays. Gene expression profiling was conducted through both RNA sequencing and quantitative real-time PCR. Protein analysis was carried out through Western blotting and immunofluorescence staining. Assessment of the corneal epithelial defect area was conducted through fluorescein sodium staining. Tear secretion was quantified using the phenol red cotton thread method. Results: Potassium efflux was observed to further facilitate corneal epithelial pyroptosis. KCNK5 exhibited upregulation in both in vivo and in vitro models of dry eye. The overexpression of KCNK5 was observed to induce potassium efflux and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in vitro. Silencing KCNK5 effectively mitigated pyroptosis in dry eye. Additionally, the overexpression of KCNK5 results in the downregulation of TNF superfamily member 10 (TNFSF10) and subsequent impairment of autophagy. TNFSF10 supplementation could promote autophagy and mitigate pyroptosis in dry eye. Conclusions: The upregulation of KCNK5 mediates TNFSF10 to impair autophagy and induce pyroptosis in dry eye. Consequently, targeting KCNK5 may represent a novel and promising approach to therapeutic intervention in the management of dry eye.


Assuntos
Síndromes do Olho Seco , Canais de Potássio de Domínios Poros em Tandem , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Humanos , Camundongos , Autofagia , Síndromes do Olho Seco/metabolismo , Células Epiteliais , Camundongos Endogâmicos C57BL , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Piroptose , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L367-L376, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252657

RESUMO

Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1ß, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1ß secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.


Assuntos
Inflamassomos , Canais de Potássio de Domínios Poros em Tandem , Tetra-Hidronaftalenos , Tetrazóis , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Camundongos Knockout , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Macrófagos/metabolismo , Caspase 1/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo
5.
Neurosci Lett ; 821: 137613, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38157928

RESUMO

Increased concentrations of lactate (15-30 mM) are associated with and found to be neuroprotective in various brain pathophysiology. In our earlier studies we showed that high levels of lactate can increase TREK1 channel activity and expression within 1 h. TREK1 channels are two pore domain leak potassium ion channels that are upregulated during cerebral ischemia, epilepsy and other brain pathologies. They play a prominent neuroprotective role against excitotoxicity. Although it has been previously shown that chronic application of lactate (6 h) causes increased gene transcription and protein expression, we observe clustering of TREK1 channels that is dependent on time of exposure (3-6 h) and concentration of lactate (15-30 mM). Using immunofluorescence techniques and image analysis, we show that the clustering of TREK1 channels is dependent on the actin cytoskeletal network of the astrocytes. Clustering of TREK1 channels can augment astrocytic functions during pathophysiological conditions and have significant implications in lactate mediated neuroprotection.


Assuntos
Astrócitos , Hipocampo , Ácido Láctico , Fármacos Neuroprotetores , Canais de Potássio de Domínios Poros em Tandem , Animais , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Láctico/farmacologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos Wistar
6.
J Mol Cell Cardiol ; 184: 26-36, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793594

RESUMO

RATIONALE: The neurokinin-III receptor was recently shown to regulate atrial cardiomyocyte excitability by inhibiting atrial background potassium currents. TASK-1 (hK2P3.1) two-pore-domain potassium channels, which are expressed atrial-specifically in the human heart, contribute significantly to atrial background potassium currents. As TASK-1 channels are regulated by a variety of intracellular signalling cascades, they represent a promising candidate for mediating the electrophysiological effects of the Gq-coupled neurokinin-III receptor. OBJECTIVE: To investigate whether TASK-1 channels mediate the neurokinin-III receptor activation induced effects on atrial electrophysiology. METHODS AND RESULTS: In Xenopus laevis oocytes, heterologously expressing neurokinin-III receptor and TASK-1, administration of the endogenous neurokinin-III receptor ligands substance P or neurokinin B resulted in a strong TASK-1 current inhibition. This could be reproduced by application of the high affinity neurokinin-III receptor agonist senktide. Moreover, preincubation with the neurokinin-III receptor antagonist osanetant blunted the effect of senktide. Mutagenesis studies employing TASK-1 channel constructs which lack either protein kinase C (PKC) phosphorylation sites or the domain which is regulating the diacyl glycerol (DAG) sensitivity domain of TASK-1 revealed a protein kinase C independent mechanism of TASK-1 current inhibition: upon neurokinin-III receptor activation TASK-1 channels are blocked in a DAG-dependent fashion. Finally, effects of senktide on atrial TASK-1 currents could be reproduced in patch-clamp measurements, performed on isolated human atrial cardiomyocytes. CONCLUSIONS: Heterologously expressed human TASK-1 channels are inhibited by neurokinin-III receptor activation in a DAG dependent fashion. Patch-clamp measurements, performed on human atrial cardiomyocytes suggest that the atrial-specific effects of neurokinin-III receptor activation on cardiac excitability are predominantly mediated via TASK-1 currents.


Assuntos
Fibrilação Atrial , Canais de Potássio de Domínios Poros em Tandem , Humanos , Animais , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Transdução de Sinais , Proteína Quinase C/metabolismo , Potássio/metabolismo , Xenopus laevis/metabolismo , Oócitos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo
7.
Biomed Pharmacother ; 165: 115139, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454597

RESUMO

TREK-1 (TWIK-related potassium channel-1) is a subunit of the two-pore domain potassium (K2p) channel and is widely expressed in the brain. TREK-1 knockout mice were shown to have antidepressant-like effects, providing evidence for the channel's potential as a therapeutic target. However, currently there is no good pharmacological inhibitor specifically targeting TREK-1 containing K2p channels that also displays similar antidepressant-like effects. Here, we sought to find selective and potent inhibitors for TREK-1 related dimers both in vitro and in vivo. We synthesized and evaluated 2-hydroxy-3-phenoxypropyl piperidine derivatives yielding a library from which many TREK-1 targeting candidates emerged. Among these, hydroxyl-phenyl- (2a), piperidino- (2g), and pyrrolidino- (2h) piperidinyl substituted compounds showed high potencies to TREK-1 homodimers with significant antidepressant-like effects in forced swim test and tail suspension test. Interestingly, these compounds were found to have high potencies to TWIK-1/TREK-1 heterodimers. Contrastingly, difluoropiperidinyl-4-fluorophenoxy (3e) and 4-hydroxyphenyl-piperidinyl-4-fluorophenoxy (3j) compounds had high potencies to TREK-1 homodimer but lower potency to TWIK-1/TREK-1 heterodimers without significant antidepressant-like effects. We observed positive correlation between inhibition potency to TWIK-1/TREK-1 and immobility time, and no correlation between inhibition potency to TREK-1 homodimer and immobility time. This was consistent with molecular docking simulations of selected compounds to TREK-1 homodimeric and TWIK-1/TREK-1 heterodimeric models. Existing antidepressant fluoxetine was also found to potently inhibit TWIK-1/TREK-1 heterodimers. Our study reveals novel potent TWIK-1/TREK-1 inhibitors 2a, 2g, and 2h as potential antidepressants and suggest that the TWIK-1/TREK-1 heterodimer could be a potential novel molecular therapeutic target for antidepressants.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Camundongos , Animais , Simulação de Acoplamento Molecular , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Encéfalo/metabolismo , Antidepressivos/farmacologia , Camundongos Knockout
8.
J Physiol ; 601(17): 3717-3737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477289

RESUMO

Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.


Assuntos
Fibrilação Atrial , Canais de Potássio de Domínios Poros em Tandem , Hipertensão Arterial Pulmonar , Humanos , Circulação Pulmonar , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Potenciais da Membrana , Pulmão/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo
9.
Cells ; 12(11)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296621

RESUMO

K2P channels, also known as two-pore domain K+ channels, play a crucial role in maintaining the cell membrane potential and contributing to potassium homeostasis due to their leaky nature. The TREK, or tandem of pore domains in a weak inward rectifying K+ channel (TWIK)-related K+ channel, subfamily within the K2P family consists of mechanical channels regulated by various stimuli and binding proteins. Although TREK1 and TREK2 within the TREK subfamily share many similarities, ß-COP, which was previously known to bind to TREK1, exhibits a distinct binding pattern to other members of the TREK subfamily, including TREK2 and the TRAAK (TWIK-related acid-arachidonic activated K+ channel). In contrast to TREK1, ß-COP binds to the C-terminus of TREK2 and reduces its cell surface expression but does not bind to TRAAK. Furthermore, ß-COP cannot bind to TREK2 mutants with deletions or point mutations in the C-terminus and does not affect the surface expression of these TREK2 mutants. These results emphasize the unique role of ß-COP in regulating the surface expression of the TREK family.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteína Coatomer/metabolismo
10.
J Biol Chem ; 299(6): 104737, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084812

RESUMO

TRESK (K2P18.1) possesses unique structural proportions within the K2P background potassium channel family. The previously described TRESK regulatory mechanisms are based on the long intracellular loop between the second and the third transmembrane segments (TMS). However, the functional significance of the exceptionally short intracellular C-terminal region (iCtr) following the fourth TMS has not yet been examined. In the present study, we investigated TRESK constructs modified at the iCtr by two-electrode voltage clamp and the newly developed epithelial sodium current ratio (ENaR) method in Xenopus oocytes. The ENaR method allowed the evaluation of channel activity by exclusively using electrophysiology and provided data that are otherwise not readily available under whole-cell conditions. TRESK homodimer was connected with two ENaC (epithelial Na+ channel) heterotrimers, and the Na+ current was measured as an internal reference, proportional to the number of channels in the plasma membrane. Modifications of TRESK iCtr resulted in diverse functional effects, indicating a complex contribution of this region to K+ channel activity. Mutations of positive residues in proximal iCtr locked TRESK in low activity, calcineurin-insensitive state, although this phosphatase binds to distant motifs in the loop region. Accordingly, mutations in proximal iCtr may prevent the transmission of modulation to the gating machinery. Replacing distal iCtr with a sequence designed to interact with the inner surface of the plasma membrane increased the activity of the channel to unprecedented levels, as indicated by ENaR and single channel measurements. In conclusion, the distal iCtr is a major positive determinant of TRESK function.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Membrana Celular , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Mutação , Oócitos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus
11.
Front Biosci (Landmark Ed) ; 28(3): 51, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37005754

RESUMO

BACKGROOUND: At low extracellular potassium ([K+]e) conditions, human cardiomyocytes can depolarize to -40 mV. This is closely related to hypokalemia-induced fatal cardiac arrhythmia. The underlying mechanism, however, is still not well understood. TWIK-1 channels are background K+ channels that are highly expressed in human cardiomyocytes. We previously reported that TWIK-1 channels changed ion selectivity and conducted leak Na+ currents at low [K+]e. Moreover, a specific threonine residue (Thr118) within the ion selectivity filter was responsible for this altered ion selectivity. METHODS: Patch clamp were used to investigate the effects of TWIK-1 channels on the membrane potentials of cardiomyocytes in response to low [K+]e. RESULTS: At 2.7 mM [K+]e and 1 mM [K+]e, both Chinese hamster ovary (CHO) cells and HL-1 cells ectopically expressed human TWIK-1 channels displayed inward leak Na+ currents and reconstitute depolarization of membrane potential. In contrast, cells ectopically expressed human TWIK-1-T118I mutant channels that remain high selectivity to K+ exhibited hyperpolarization of membrane potential. Furthermore, human iPSC-derived cardiomyocytes showed depolarization of membrane potential in response to 1 mM [K+]e, while the knockdown of TWIK-1 expression eliminated this phenomenon. CONCLUSIONS: These results demonstrate that leak Na+ currents conducted by TWIK-1 channels contribute to the depolarization of membrane potential induced by low [K+]e in human cardiomyocytes.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Cricetinae , Animais , Humanos , Células CHO , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Cricetulus , Miócitos Cardíacos/metabolismo , Potássio/metabolismo
12.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047271

RESUMO

Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.


Assuntos
Eucariotos , Canais de Potássio de Domínios Poros em Tandem , Eucariotos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sistema Livre de Células/metabolismo , Dimerização , Bioensaio
13.
Biol Chem ; 404(4): 355-375, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36774650

RESUMO

Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo
14.
Neurochem Res ; 48(6): 1737-1754, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36670238

RESUMO

Major depressive disorder (MDD) refers to a widespread psychiatric disorder. Astrocytes play a pivotal role in regulating inflammation which is a well-acknowledged key component in depression pathogenesis. However, the effects of the neuroinflammation-inducing A1-like astrocytes on MDD are still unknown. TWIK-related K+ channel 1 (TREK-1) has been demonstrated to regulate the action of antidepressants. Nevertheless, its mechanisms and effects on A1-like astrocyte stimulation in MDD are not clear. Therefore, we conducted in vivo and in vitro experiments using TREK-1 specific inhibitor spadin. In vivo, rats were subjected to a 6-week chronic unpredictable mild stress (CUMS) followed by spadin treatment. Behavioral tests were employed to surveil depressive-like behaviors. Hippocampal proteomic analysis was carried out with the purpose of identifying differentially expressed proteins after CUMS and spadin treatments. In vitro, astrocyte-conditioned medium and spadin were used to treat rat astrocyte cell line. The activated microglia, inflammatory factors, A1 astrocyte markers, and activated nuclear factor kappa B (NF-κB) pathway were later analyzed using immunofluorescence, western blot, and RT-qPCR. Our findings indicated that blockage of TREK-1 reduced CUMS-induced depressive-like behavior in rats, inhibited the microglial stimulation, reduced inflammatory factor levels, and suppressed the activation of A1-like reactive astrocytes in the hippocampus. We also verified that the suppression of A1-like astrocytes by spadin necessitated the NF-κB pathway. According to the findings, blocking TREK-1 inhibited the activation of A1-like reactive astrocytes via the NF-κB signaling pathway in MDD. Our study preliminarily identifies a novel antidepressant mechanism of TREK-1 action and provides a therapeutic path for MDD.


Assuntos
Transtorno Depressivo Maior , Canais de Potássio de Domínios Poros em Tandem , Ratos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , NF-kappa B/metabolismo , Astrócitos/metabolismo , Potássio/metabolismo , Proteômica , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Transdução de Sinais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Estresse Psicológico/metabolismo , Hipocampo/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L64-L75, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410022

RESUMO

Influenza-A virus (IAV) infects yearly an estimated one billion people worldwide, resulting in 300,000-650,000 deaths. Preventive vaccination programs and antiviral medications represent the mainstay of therapy, but with unacceptably high morbidity and mortality rates, new targeted therapeutic approaches are urgently needed. Since inflammatory processes are commonly associated with measurable changes in the cell membrane potential (Em), we investigated whether Em hyperpolarization via TREK-1 (K2P2.1) K+ channel activation can protect against influenza-A virus (IAV)-induced pneumonia. We infected mice with IAV, which after 5 days caused 10-15% weight loss and a decrease in spontaneous activity, representing a clinically relevant infection. We then started a 3-day intratracheal treatment course with the novel TREK-1 activating compounds BL1249 or ML335. We confirmed TREK-1 activation with both compounds in untreated and IAV-infected primary human alveolar epithelial cells (HAECs) using high-throughput fluorescent imaging plate reader (FLIPR) assays. In mice, TREK-1 activation with BL1249 and ML335 counteracted IAV-induced histological lung injury and decrease in lung compliance and improved BAL fluid total protein levels, cell counts, and inflammatory IL-6, IP-10/CXCL-10, MIP-1α, and TNF-α levels. To determine whether these anti-inflammatory effects were mediated by activation of alveolar epithelial TREK-1 channels, we studied the effects of BL1249 and ML335 in IAV-infected HAEC, and found that TREK-1 activation decreased IAV-induced inflammatory IL-6, IP-10/CXCL10, and CCL-2 secretion. Dissection of TREK-1 downstream signaling pathways and construction of protein-protein interaction (PPI) networks revealed NF-κB1 and retinoic acid-inducible gene-1 (RIG-1) cascades as the most likely targets for TREK-1 protection. Therefore, TREK-1 activation may represent a novel therapeutic approach against IAV-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Canais de Potássio de Domínios Poros em Tandem , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/patologia , Quimiocina CXCL10/metabolismo , Influenza Humana/patologia , Interleucina-6/metabolismo , Pulmão/metabolismo , Infecções por Orthomyxoviridae/patologia , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo
16.
Cell Physiol Biochem ; 56(6): 663-684, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36426390

RESUMO

The TWIK-related spinal cord K+ channel (TRESK) is part of the two-pore domain K+ channel family (K2P), which are also called leak potassium channels. As indicated by the channel family name, TRESK conducts K+ ions along the concentration gradient in a nearly voltage-independent manner leading to lowered membrane potentials. Although functional and pharmacological similarities exist, TRESK shows low sequence identity with other K2P channels. Moreover, the channel possesses several unique features such as its sensitivity to intracellular Ca2+ ions, that are not found in other K2P channels. High expression rates are found in immune-associated and neuronal cells, especially in sensory neurons of the dorsal root and trigeminal ganglia. As a consequence of the induced hyperpolarization, TRESK influences neuronal firing, the release of inflammatory mediators and the proliferation of distinct immune cells. Consequently, this channel might be a suitable target for pharmacological intervention in migraine, epilepsy, neuropathic pain or distinct immune diseases. In this review, we summarize the biochemical and biophysical properties of TRESK channels as well as their sensitivity to different known compounds. Furthermore, we give a structured overview about the physiological and pathophysiological impact of TRESK, that render the channel as an interesting target for specific drug development.


Assuntos
Canais de Potássio de Domínios Poros em Tandem , Potenciais da Membrana/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo
17.
J Biol Chem ; 298(10): 102447, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063992

RESUMO

Two-pore domain K+ channels (K2P channels), active as dimers, produce inhibitory currents regulated by a variety of stimuli. Among them, TWIK1-related alkalinization-activated K+ channel 1 (TALK1), TWIK1-related alkalinization-activated K+ channel 2 (TALK2), and TWIK1-related acid-sensitive K+ channel 2 (TASK2) form a subfamily of structurally related K2P channels stimulated by extracellular alkalosis. The human genes encoding these proteins are clustered at chromosomal region 6p21 and coexpressed in multiple tissues, including the pancreas. The question whether these channels form functional heteromers remained open. By analyzing single-cell transcriptomic data, we show that these channels are coexpressed in insulin-secreting pancreatic ß-cells. Using in situ proximity ligation assay and electrophysiology, we show that they form functional heterodimers both upon heterologous expression and under native conditions in human pancreatic ß-cells. We demonstrate that heteromerization of TALK2 with TALK1 or with TASK2 endows TALK2 with sensitivity to extracellular alkalosis in the physiological range. We further show that the association of TASK2 with TALK1 and TALK2 increases their unitary conductance. These results provide a new example of heteromerization in the K2P channel family expanding the range of the potential physiological and pathophysiological roles of TALK1/TALK2/TASK2 channels, not only in insulin-secreting cells but also in the many other tissues in which they are coexpressed.


Assuntos
Alcalose , Células Secretoras de Insulina , Canais de Potássio de Domínios Poros em Tandem , Humanos , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Células Secretoras de Insulina/metabolismo , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Potássio/metabolismo
18.
Exp Neurol ; 357: 114190, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35907583

RESUMO

TREK2 is a member of the 2-pore domain family of K+ channels (K2P) preferentially expressed by unmyelinated, slow-conducting and non-peptidergic isolectin B4-binding (IB4+) primary sensory neurons of the dorsal root ganglia (DRG). IB4+ neurons depend on the glial-derived neurotrophic factor (GDNF) family of ligands (GFL's) to maintain their phenotype. In our previous work, we demonstrated that 7 days after spinal nerve axotomy (SNA) of the L5 DRG, TREK2 moves away from the cell membrane resulting in a more depolarised resting membrane potential (Em). Given that axotomy deprives DRG neurons from peripherally-derived GFL's, we hypothesized that they might control the expression of TREK2. Using a combination of immunohistochemistry, immunocytochemistry, western blotting, in vivo pharmacological manipulation and behavioral tests we examined the ability of the GFL's (GDNF, neurturin and artemin) and their selective receptors (GFRα1, GFRα2 and GFRα3) to regulate the expression and function of TREK2 in the DRG. We found that TREK2 correlated strongly with the three receptors normally and ipsilaterally for all GFR's after SNA. GDNF, but not NGF, neurturin or artemin up-regulated the expression of TREK2 in cultured DRG neurons. In vivo continuous, subcutaneous administration of GDNF restored the subcellular distribution of TREK2 ipsilaterally and reversed mechanical and cold allodynia 7 days after SNA. This is the first demonstration that GDNF controls the expression of a K2P channel in nociceptors. As TREK2 controls the Em of C-nociceptors affecting their excitability, our finding has therapeutic potential in the treatment of chronic pain.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Neuralgia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Axotomia , Gânglios Espinais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neuralgia/metabolismo , Neurturina , Nociceptores/metabolismo , Ratos
19.
Genome Med ; 14(1): 62, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698242

RESUMO

BACKGROUND: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. METHODS: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. RESULTS: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. CONCLUSIONS: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation.


Assuntos
Deficiência Intelectual , Canais de Potássio de Domínios Poros em Tandem , Genótipo , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Mutação , Fenótipo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo
20.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682653

RESUMO

Adenomyosis is linked to dysmenorrhea and infertility. The pathogenesis of adenomyosis remains unclear, and little is known of the genetic and epigenetic changes in the eutopic endometrium in adenomyosis, which may predispose patients to the invasion and migration of endometrial tissues into the myometrium. Transcriptome studies have identified genes related to various cell behaviors but no targets for therapeutic intervention. The epigenetics of the eutopic endometrium in adenomyosis have rarely been investigated. Endometrial tissue was obtained from premenopausal women with (n = 32) or without adenomyosis (n = 17) who underwent hysterectomy aged 34-57 years at a tertiary hospital. The methylome and transcriptome were assessed by using a Methylation 450 K BeadChip array and Affymetrix expression microarray. Protein expression was examined by immunohistochemistry. Differential methylation analysis revealed 53 lowly methylated genes and 176 highly methylated genes with consistent gene expression in adenomyosis, including three genes encoding potassium ion channels. High expression of KCNK9 in the eutopic and ectopic endometria in patients with adenomyosis but not in normal controls was observed. Hormone-free, antibody-based KCNK9 targeting is a potential therapeutic strategy for adenomyosis-related dysmenorrhea, menorrhagia, and infertility.


Assuntos
Adenomiose , Endometriose , Infertilidade , Canais de Potássio de Domínios Poros em Tandem , Adenomiose/genética , Adenomiose/metabolismo , Adenomiose/patologia , Dismenorreia/genética , Endometriose/patologia , Endométrio/metabolismo , Epigenômica , Feminino , Humanos , Infertilidade/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...